Griffith, E. A. H., Charles, N. G. \& Amma, E. L. (1982). Acta Cryst. B38, 942-944.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1962). Bd. III. S. 214. Birmingham: Kynoch Press. (Gegenwärtiger Verteiler Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Bericht ORNL-5138. Oak Ridge National Laboratory, Tennessee, VStA.
Luger, P. \& Fuchs, J. (1983). ImPAS. Intermolecular Patterson Vector Search, Version September 1983. Freie universität Berlin, Berlin, Bundesrepublik Deutschland.
Pelizzi, C., Pelizzi, G. \& Vitali, F. (1987). J. Chem. Soc. Dalton Trans. 1, S. 177-181.

Rolies, M. M. \& de Ranter, C. J. (1978). Acta Cryst. B34, 3216-3218.
Romero-Molina, M. A., Gutierrez-Valero, M. D., LopezGarzon, R., Salas-Peregrin, J. M., Arriortua, M. I. \& Zuñiga, F. J. (1987). Inorg. Chim. Acta, 136, 87-92.
Sauter, H. \& Dobler, M. (1982). Helv. Chim. Acta, 65(4), 1297-1303.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). XRAY System - Version März 1976. Tech. Ber. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, VStA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of an Acetylcarbonylcyclopentadienyliron Complex with a Phosphine Ligand. I. ($\left.\boldsymbol{\eta}-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}(\mathbf{C O})(\mathrm{COMe})\left(\mathbf{P P h}_{2} \mathrm{Et}\right)$

By Hong Ye Liu, Md. Matiur Rahman, Lip Lin Koh,* Klaas Eriks, \dagger Warren P. Giering and Alfred Prock
Metcalf Center for Science and Engineering, Department of Chemistry, Boston University, Boston, MA 02215, USA

(Received 14 November 1989; accepted 17 February 1989)

Abstract

The structure of acetyl(carbonyl)(ethyldiphenylphosphine) (η-methylcyclopentadienyl)iron, $\left[\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{COMe})\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right], \quad\left[\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})\right]$, is reported. $M_{r}=420 \cdot 25$, orthorhombic, $P n a 2_{1}, a=16.094$ (5), $b=12.515$ (5), $c=10 \cdot 459(4) \AA, \quad V=2106 \cdot 6(13) \AA^{3}, \quad Z=4, \quad D_{m}=$ $1.33, D_{x}=1.325 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA, \mu$ $=8.07 \mathrm{~cm}^{-1}, F(000)=880, T=293 \mathrm{~K}, R(F)=0.061$, $w R=0.047$ for 1840 reflections with $F>3 \sigma(F)$. The structure shows that the geometry around Fe is pseudooctahedral. There is no ring slippage of the methylcyclopentadienyl ring. The $\mathrm{Fe}-\mathrm{P}$ bond distance is $2 \cdot 200$ (2) \AA, supporting the assumption that ethyldiphenylphosphine is a pure σ-donor ligand. The torsion angle $\mathrm{O} 2-\mathrm{C} 2-\mathrm{Fe}-(\mathrm{CO})(\mathrm{C} 2=$ acetyl carbon) is 43° (anti), substantially different from the theoretically calculated value of 0°.

Introduction. The separation of σ and π effects in the bonding of phosphorus ligands to transition metals has been the subject of a considerable number of inorganic and organometallic studies involving IR, ${ }^{13} \mathrm{C}$ NMR, UV, electrochemistry and X-rays (Rahman, Liu, Prock \& Giering, 1987). We have recently proposed a model of transition metal-

[^0]0108-2701/89/111683-04\$03.00
phosphorus bonding in complexes containing various phosphine ligands, based on correlation between their redox properties and their carbonyl stretching frequencies (Rahman, Liu, Eriks, Prock \& Giering, 1989). According to this model the patterns of correlation show that complexes with metal-phosphorus single bonds and complexes with metal-phosphorus multiple bonds form distinct groups. A crucial test of this model is the length of the metal-phosphorus bond. The present structure is the first of a systematic study of complexes of types $\left[\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}(\mathrm{CO})-\right.$ $(\mathrm{COMe}) L]$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{COMe}) L\right] \quad(L=$ phosphorus ligand) in which the $\mathrm{Fe}-\mathrm{P}$ bond distance is of particular interest.

Experimental. The complex was prepared by refluxing $\left[\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Me}\right]$ and excess ligand, $\mathrm{PPh}_{2} \mathrm{Et}$, in acetronitrile solution under nitrogen (Green \& Westlake, 1971). Dark orange crystals of the title compound were obtained by slow crystallization from the acetonitrile solution. Their density was determined by flotation in mixtures of benzene and carbon tetrachloride. A parallelepiped-shaped crystal was mounted on a glass fiber with epoxy cement and placed on a Syntex $P 2_{1}$ automated diffractometer, equipped with an Mo tube and Nb filter. Lattice parameters were calculated from 15 reflections in a 2θ range of $10 \cdot 5-25 \cdot 7^{\circ}$. Details for data collection are given in Table 1. Intensities were
© 1989 International Union of Crystallography

Table 1. Data collection parameters

Crystal size (mm)	$0.28 \times 0.30 \times 0.46$
Scan method	$\omega / 2 \theta$
Scan range $\left({ }^{\circ}\right)$	$2.0-2 \cdot 3$
Scan rate $\left({ }^{\circ} \min ^{-1}\right)$	$2.02-29.30$
2θ range $\left({ }^{\circ}\right)$	$4.0-55.0$
Reflections collected (h, k, l)	$0 \rightarrow 19,0 \rightarrow 16,-14 \rightarrow 14$
$R_{\text {in }}$	0.066
Number of reflections measured	5402
Number of unique reflections with	
$F>3 \sigma$	1840
Number of parameters refined	244
Standard reflections $(h k l)$	$100 ; 136 ; 463$
Decay of standards	None
Max./min. transmission	$0.8199 / 0.7496$
$R(F)$	0.061
$w R$	0.047
Goodness of fit	1.556
$\Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	-0.55
$\Delta \rho_{\max }\left(\mathrm{e} \AA^{-3}\right)$	0.7
$M a x$. shift/e.s.d.	0.01

Table 2. Positional and thermal parameters of atoms in $\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO}) \mathrm{Fe}(\mathrm{COMe})\left(\mathrm{PPh}_{2} \mathrm{Et}\right)$

	x	y	z	$U_{\text {eq }}\left(\AA^{2} \times 10^{3}\right)^{*}$
Fe	$0 \cdot 0492$ (1)	0.1576 (1)	0.0000	42.7 (4)
P	0.0490 (1)	0.3170 (1)	0.0886 (2)	40 (1)
Cl	$0 \cdot 0097$ (5)	$0 \cdot 2007$ (6)	-0.1402 (8)	56 (3)
C2	-0.0582 (6)	0.1248 (6)	0.0711 (8)	65 (3)
C3	-0.1209 (6)	0.0658 (8)	-0.0078 (16)	119 (5)
C4	$0 \cdot 1591$ (5)	0.0893 (7)	-0.0790 (9)	57 (3)
C5	0.0961 (8)	0.0091 (8)	-0.0599 (11)	69 (4)
C6	0.0789 (7)	0.0034 (8)	0.0709 (11)	71 (4)
C7	$0 \cdot 1266$ (6)	0.0823 (7)	$0 \cdot 1325$ (8)	59 (3)
C8	$0 \cdot 1762$ (5)	0.1331 (6)	$0 \cdot 0409$ (8)	52 (3)
C9	$0 \cdot 1999$ (6)	0.1134 (7)	-0.2024 (10)	88 (4)
C10	$0 \cdot 1078$ (4)	0.4214 (4)	0.0063 (9)	41 (2)
C11	$0 \cdot 1449$ (5)	0.4013 (6)	-0.1117 (7)	47 (3)
C12	$0 \cdot 1881$ (5)	0.4819 (7)	-0.1743 (8)	60 (3)
C13	$0 \cdot 1942$ (5)	0.5824 (6)	-0.1222 (8)	58 (3)
C14	0.1579 (5)	0.6021 (5)	-0.0068 (11)	62 (3)
C15	$0 \cdot 1144$ (5)	0.5255 (6)	0.0581 (8)	58 (3)
C16	$0 \cdot 0943$ (5)	0.3207 (5)	$0 \cdot 2500$ (6)	46 (3)
C17	$0 \cdot 0460$ (6)	0.2895 (7)	$0 \cdot 3527$ (7)	72 (3)
C18	0.0804 (9)	0.2844 (8)	0.4746 (10)	89 (5)
C19	$0 \cdot 1612$ (9)	0.3108 (6)	0.4907 (11)	91 (4)
C20	0.2111 (6)	0.3388 (6)	$0 \cdot 3923$ (10)	75 (4)
C21	0.1778 (5)	0.3437 (6)	$0 \cdot 2692$ (7)	55 (3)
C22	-0.0508 (5)	0.3856 (6)	$0 \cdot 1104$ (9)	60 (3)
C23	-0.0960 (5)	0.4070 (6)	-0.0128 (14)	81 (4)
O	-0.0164 (4)	0.2259 (5)	-0.2408 (6)	85 (3)
O2	-0.0836 (4)	0.1438 (5)	0.1779 (6)	82 (3)
${ }^{*} U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{\mathbf{i}} \cdot \mathbf{\mathbf { a } _ { j }}$.				

corrected for Lorentz-polarization and absorption effects. The positions of the Fe and P atoms were determined from a Patterson map. Since the z axis in space group $\mathrm{Pna} 2_{1}$ is a polar axis, the z coordinate of the iron was arbitrarily assigned as 0.00 . All non-H atoms were located from a successive least-squares refinement and difference electron density calculations. They were refined first with isotropic and later with anisotropic thermal parameters, to values of the residuals $R=0.073$ and $w R=0.065$, where $w=$ $\left[\sigma\left(F_{o}\right)\right]^{-2}$ and $\sigma\left(F_{o}\right)$ is obtained from counting statis-

Table 3. Bond distances (\AA) and selected angles $\left({ }^{\circ}\right)$ in $\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO}) \mathrm{Fe}(\mathrm{COMe})\left(\mathrm{PPh}_{2} \mathrm{Et}\right)$

Fig. 1. Geometry of the complex and numbering of the atoms. The thermal ellipsoids are scaled to the 50% probability level.
tics. At this point H atoms were included in the calculations. Some of these were observable in difference electron density maps, others were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of $1.00 \AA$. In the final calculations the positions of the H atoms were not refined, and they were given an isotropic thermal parameter $U=1.3$ times the U value of the atom to which they are attached. The final values of the residuals were $R=0.061$ and $w R$ $=0.047$. The function minimized was $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$. Final atomic coordinates for the non-H atoms are shown in Table 2.* Atomic scattering

[^1]Table 4. Comparison of molecular bond lengths (\AA) with literature results

Complex	$\mathrm{Fe}-\mathrm{P}$	$\mathrm{Fe}-\mathrm{C}(\equiv \mathrm{O})$	$\mathrm{Fe}-\mathrm{C}=\mathrm{O})$	$\mathrm{Fe}-\mathrm{Cp}^{*}$	$\mathrm{Fe}-\mathrm{Cp} \dagger$	Ref.
$\left[\left(\eta-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}(\mathrm{CO})-\right.$ (COMe) $\left.\mathrm{PPh}_{2} \mathrm{Et}\right]$	$2 \cdot 200$ (2)	1.687 (9)	1.925 (10)	2.110	1.738	(a)
$\mathrm{I}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})$ (COMe) $\left\{\mathrm{Ph}_{2} \mathrm{PNH}-\right.$						
$\mathrm{CH}(\mathrm{Me})(\mathrm{Ph})\}]$ $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})-\right.$	2.188 (2)	1.749 (7)	1.976 (6)	2.131	1.756	(b)
$\left.\left(\mathrm{COOC}_{10} \mathrm{H}_{19}\right) \mathrm{PPh}_{3}\right]$ $\left[\left(\eta-1-\mathrm{CH}_{3}-3-\mathrm{PhC}_{5} \mathrm{H}_{3}\right)-\right.$	2-214 (2)	1.670 (6)	1.825 (6)	2.113	1.743	(c)
$\mathrm{Fe}(\mathrm{CO})(\mathrm{COMe}) \mathrm{PPh}_{3}$] ($R S)-E-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})-\right.$	$2 \cdot 216$ (3)	1.700 (14)	1.964 (12)	2.136	1.758	(d)
$\begin{aligned} & \left.\left(\mathrm{COCH}=\mathrm{CHMe}_{3}\right) \mathrm{PP}_{3}\right] \\ & (\mathrm{Z})-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})-\right. \end{aligned}$	$2 \cdot 195$ (1)	1.738 (3)	1.958 (3)	2.115	1.745	(e)
$(\mathrm{COMe}=\mathrm{CHMe}) \mathrm{PPh}_{3}$] $\left[\left(\eta-\mathrm{C}_{5} \mathbf{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})-\right.$	$2 \cdot 205$ (1)	1.729 (5)	1.974 (5)	2.096	1.729	(n)
\{ $\mathrm{COCH}(\mathrm{Me}) \mathrm{Et}_{\mathrm{t}}$) PPh_{3}] $(R)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\right.$ $\left(\mathrm{PPh}_{3}\right) \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{O}$]	$2 \cdot 193$ (1)	1.733 (3)	1.964 (3)	2.121	1.752	(g)
[(R)-menthyl]	2.191 (8)	1.73 (3)	$1 \cdot 98$ (3)	$2 \cdot 11$	1.74	(h)
$\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})-\right.$ $\left\{\eta^{\prime}-(Z)\right.$ - $\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me})-$ $\left.=\mathrm{C}(\mathrm{Ph}) \mathrm{Me}\} \mathrm{P}(\mathrm{OPh})_{3}\right]$	$2 \cdot 110$ (1)	1.740 (3)	1.966 (3)	2.101	1.737	(i)
$\begin{aligned} & {\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{Fe}(\mathrm{CO})-\right.} \\ & \stackrel{\eta}{ } \eta^{1}-(E)-\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me})- \\ & \left.=\mathrm{C}(\mathrm{Me}) \mathrm{SPh}\} \mathrm{P}(\mathrm{OPh})_{3}\right] \end{aligned}$						
A form	$2 \cdot 106$ (1)	1.748 (6)	1.968 (5)	$2 \cdot 102$	1.740	
B form	$2 \cdot 110$ (1)	1.724 (6)	1.957 (6)	2.094	1.767	(i)

References: (a) this paper; (b) Korp \& Bernal (1981); (c) Reisner, Bernal, Brunner \& Muschiol (1978); (d) Attig, Teller, Wu, Bau \& Wojcicki (1979); (e) Davies, Dorder-Hedgecock, Sutton \& Walker (1986); (f) Baird, Davies, Jones, Prout \& Warner (1984); (g) Baird, Bandy, Davies \& Prout (1983); (h) Davies, Dorder-Hedgecock, Sutton, Walker, Bourne, Jones \& Prout (1986); (i) Reger, Mintz \& Lebioda (1986).

* Average $\mathrm{Fe}-\mathrm{C}$ distance.
\dagger Distance to ring center.
factors are from International Tables for X-ray Crystallography (1974). Computations were done with the UCLA Crystallographic Program Package (Strouse, 1978) as modified at Argonne National Laboratory.

Discussion. Table 3 gives values for the most important interatomic distances and angles. Fig. 1 shows the molecule, not including H atoms, and gives the numbering system for the atoms.

Of considerable importance is the $\mathrm{Fe}-\mathrm{P}$ bond length of $2 \cdot 200$ (2) \AA. According to the theoretical ideas we have developed (Rahman, Liu, Eriks, Prock \& Giering, 1989), there should be two significantly different values for this bond length, depending on whether the phosphine ligand is a pure $\boldsymbol{\sigma}$ donor or a σ-donor $/ \pi$-acceptor ligand. In the former case we predict the $\mathrm{Fe}-\mathrm{P}$ bond length to be long, around $2 \cdot 20 \AA$, and in the latter case we expect it to be short, around $2 \cdot 10 \AA$ or less. The present ligand, ethyldiphenylphosphine, is predicted by our correlation scheme to be a pure σ donor, and it is satisfying that the $\mathrm{Fe}-\mathrm{P}$ bond length is found in the region of long values. Table 4 shows values for $\mathrm{Fe}-\mathrm{P}$ bond lengths in complexes that have been reported in the literature. The first eight compounds contain ligands that we classify as pure σ donors, while the last two are σ-donor $/ \pi$-acceptor ligands. The $\mathrm{Fe}-\mathrm{P}$ distance
values support our predictions. In addition, Table 4 also shows that large changes in the sizes of the substituted cyclopentadienyl and/or acetyl ligands do not affect the $\mathrm{Fe}-\mathrm{P}$ distance significantly.

The second noteworthy result is that the Fe atom is centroid with respect to the cyclopentadiene ring. The distances $\mathrm{Fe}-\mathrm{C}(4-8)$ average $2 \cdot 110$ (11) \AA, and the deviations from the average correspond to two standard deviations in the distance values. The distance from iron to the center of the five-membered ring is 1.738 (9) \AA, almost identical to those reported for all complexes in Table 4, most of which do not have a methyl group on the cyclopentadiene ring. Thus, one may conclude that the presence of the methyl group on the five-membered ring has neither electronic nor steric effects on the iron-to-ring distance. The Fe atom has pseudooctahedral coordination geometry, three coordination sites being occupied by the cyclopentadiene ring (piano-stool configuration). The angles $\mathrm{P}-\mathrm{Fe}-\mathrm{C} 1, \mathrm{P}-\mathrm{Fe}-\mathrm{C} 2$ and $\mathrm{Cl}-\mathrm{Fe}-\mathrm{C} 2$ are each close to 90° (Table 3).

The third interesting feature of the structure concerns the torsion angle $\mathrm{O} 2-\mathrm{C} 2-\mathrm{Fe}-(\mathrm{CO})$. It can best be seen in Fig. 2,* which shows the molecule viewed directly along the $\mathrm{C} 2-\mathrm{Fe}$ bond. The car-

[^2]bonyl group and the carboxyl oxygen, O2, are anti, but the torsion angle is 43°, in contrast to the value of $0^{\circ}($ anti $)$ or $0^{\circ}(s y n)$ calculated theoretically using extended Huckel and $a b$ initio SCF MO methods (Davies, Seeman \& Williams, 1986; Bodner, Patton, Smith, Georgiou, Tam, Wong, Strouse \& Gladysz, 1987). The minirnum found in those calculations is not deep, however, and a significant difference of 43° may not be surprising for steric reasons.

We gratefully acknowledge the generous support of the donors of the Petroleum Research Fund administered by the American Chemical Society. We wish to thank Professor James A. Ibers, Northwestern University, for helpful comments.

References

Attig, T. G., Teller, R. G., Wu, S.-M., Bau, R. \& Wojcicki, A. (1979). J. Am. Chem. Soc. 101, 619-628.

Baird, G. J., Bandy, J. A., Davies, S. G. \& Prout, K. (1983). J. Chem. Soc. Chem. Commun. pp. 1202-1 203.
Baird, G. J., Davies, S. G., Jones, R. H., Prout, K. \& Warner, P. (1984). J. Chem. Soc. Chem. Commun. pp. 745-747.

Bodner, G. S., Patton, A. T., Smith, D. E., Georgiou, S., Tam, W., Wong, W.-K., Strouse, C. E. \& Gladysz, J. A. (1987). Organometallics, 6, 1954-1961.
Davies, S. G., Dordor-Hedgecock, I. M., Sutton, K. H. \& Walker, J. C. (1986). Tetrahedron, 42, 5123-5137.
Davies, S. G., Dordor-Hedgecock, I. M., Sutton, K. H., Walker, J. C., Bourne, C., Jones, R. H. \& Prout, K. (1986). J. Chem. Soc. Chem. Commun. pp. 607-609.

Davies, S. G., Seeman, J. I. \& Williams, I. H. (1986). Tetrahedron Lett. 27, 619-622.
Green, M. \& Westlake, D. J. (1971). J. Chem. Soc. A, pp. 367-371.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Korp, J. D. \& Bernal, I. (1981). J. Organomet Chem. 220, 355-364.
Rahman, Md. M., Liu, H. Y., Eriks, K., Prock, A. \& Giering, W. P. (1989). Organometallics, 8, 1-7.

Rahman, Md. M., Liu, H. Y., Prock, A. \& Giering, W. P. (1987). Organometallics, 6, 650-658; and references therein.

Reger, D. L., Mintz, E. \& Lebioda, L. (1986). J. Am. Chem. Soc. 108, 1940-1949.
Reisner, G. M., Bernal, I., Brunner, H. \& Muschiol, M. (1978). Inorg. Chem. 17, 783-789.

Strouse, C. (1978). UCLA Crystallographic Program Package. Univ, of California, Los Angeles, USA.

Acta Cryst. (1989). C45, 1686-1689

Structure du $\left[\mathrm{Pd}\left\{\left(\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{O}\right)_{\mathbf{2}} \mathbf{P}(\mathbf{O}) \mathbf{N P}(\mathbf{S})\left(\mathbf{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{\mathbf{2}}\right\}_{2}\right]$

Par Z. Žák
Département de Chimie Inorganique, Faculté des Sciences, Université de J. E. Purkyně, Kotlář̌ká 2, 61137 Brno, Tchécoslovaquie
M. Fofana
Section Chimie Inorganique, Université de Conakry, Conakry, République de Guineé
J. Kameníček
Département de Chimie Inorganique et Physique, Faculté des Sciences, Université de Palacký, Křizkovského 10, 77147 Olomouc, Tchécoslovaquie
et T. GŁowiak
Département de Chimie, Université de Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Pologne

(Reçu le 4 décembre 1988, accepté le 15 juin 1989)

Abstract

Bis[(diphenoxyphosphoryl)(diphenoxythio-phosphoryl)amido- N, S]palladium(II), $\quad M_{r}=1099 \cdot 3$, monoclinic, $P 2_{1} / c, a=11.827(2), b=12.175(2), c=$ 18.830 (2) $\AA, \beta=116.48(5)^{\circ}, V=2427(2) \AA^{3}, Z=2$, $D_{m}=1.48, \quad D_{x}=1.50 \mathrm{Mg} \mathrm{m}^{-3}$, graphite-monochromatized Mo $K \bar{\alpha}$ radiation, $\quad \lambda=0.7107 \AA, \quad \mu=$ $0.65 \mathrm{~mm}^{-1}, F(000)=1120, T=293 \mathrm{~K}$. The structure was solved by the heavy-atom method and refined to $R=0.049$ for 4302 independent reflexions. The Pd

0108-2701/89/111686-04\$03.00
atom lies on a centre of symmetry and is coordinated by two N and two S atoms from two molecules of the ligand in a planar arrangement. $\mathrm{Pd}-\mathrm{N}$ and Pd-S bond lengths are 2.055 and $2.342 \AA$, respectively, and the $\mathrm{N}-\mathrm{Pd}-\mathrm{S}$ angles are 78.53 and 101.47°, respectively.

Introduction. Les éthers des acides du phosphore sont utilisés souvent comme les extractants dans la © 1989 International Union of Crystallography

[^0]: * Present address: Department of Chemistry, National University of Singapore, Singapore 0511 .
 \dagger To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, least-squares planes and dihedral angles and Fig. 2 showing the torsion angle around $\mathrm{C} 2-\mathrm{Fe}$ have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51973 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * See deposition footnote.

